Search results
Results from the WOW.Com Content Network
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
The bracket integration method (method of brackets) applies Ramanujan's master theorem to a broad range of integrals. [7] The bracket integration method generates the integrand's series expansion , creates a bracket series, identifies the series coefficient and formula parameters and computes the integral.
The closed form follows from the master theorem for divide-and-conquer recurrences. The number of comparisons made by merge sort in the worst case is given by the sorting numbers . These numbers are equal to or slightly smaller than ( n ⌈ lg n ⌉ − 2 ⌈lg n ⌉ + 1), which is between ( n lg n − n + 1) and ( n lg n + n + O(lg n )). [ 6 ]
The space hierarchy theorem states that ((())) (()). The time and space hierarchy theorems form the basis for most separation results of complexity classes. For instance, the time hierarchy theorem tells us that P is strictly contained in EXPTIME, and the space hierarchy theorem tells us that L is strictly contained in PSPACE.
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
The space complexity of an algorithm or a data structure is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. [ 1 ]
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: