Search results
Results from the WOW.Com Content Network
A universe set is an absorbing element of binary union . The empty set ∅ {\displaystyle \varnothing } is an absorbing element of binary intersection ∩ {\displaystyle \cap } and binary Cartesian product × , {\displaystyle \times ,} and it is also a left absorbing element of set subtraction ∖ : {\displaystyle \,\setminus :}
Every binary relation on a set can be extended to a preorder on by taking the transitive closure and reflexive closure, + =. The transitive closure indicates path connection in R : x R + y {\displaystyle R:xR^{+}y} if and only if there is an R {\displaystyle R} - path from x {\displaystyle x} to y . {\displaystyle y.}
In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set together with a reflexive and transitive binary relation (that is, a preorder), with the additional property that every pair of elements has an upper bound. [1]
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates every pair of elements of the set to an element of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
The resulting algebraic object satisfies the axioms for a group. Specifically: Associativity The binary operation on G × H is associative. Identity The direct product has an identity element, namely (1 G, 1 H), where 1 G is the identity element of G and 1 H is the identity element of H.
Recurrence relations are equations which define one or more sequences recursively. Some specific kinds of recurrence relation can be "solved" to obtain a non-recursive definition (e.g., a closed-form expression). Use of recursion in an algorithm has both advantages and disadvantages. The main advantage is usually the simplicity of instructions.
A binary tree that is not in extended form may be converted into an extended binary tree by treating all its nodes as internal, and adding an external node for each missing child of an internal node. In the other direction, an extended binary tree with at least one internal node may be converted back into a non-extended binary tree by removing ...
The apparent plural form in English goes back to the Latin neuter plural mathematica , based on the Greek plural ta mathēmatiká (τὰ μαθηματικά) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after the pattern of ...