Search results
Results from the WOW.Com Content Network
There will be an intersection if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment ...
The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path. Usually the Sun (or Moon for nocturnal species) is the only light source and flying that way will result in a practically straight line. [8] In the same token, a rhumb line approximates a logarithmic spiral close to a ...
The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.
Green line has two intersections. Yellow line lies tangent to the cylinder, so has infinitely many points of intersection. Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space. An arbitrary line and cylinder may have no intersection at all.
Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)
The definition, though with the name ’directivity curve’, was used in a 1967 article by Endre Simonyi. [1] This article also defined 'directivity vector' as = + (), where P and Q are the dx/dt and dy/dt differential equations, and i and j are the x and y direction unit vectors.
The quantities k, τ, and T, and for a given p also r, have a one-to-one connection given by the following equation (which can be derived by taking the natural logarithm of the above): = = = (+) where k = 0 corresponds to r = 0 and to τ and T being infinite.