enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2] A sequence that does not converge is said to be divergent. [3] The limit of a sequence is said to be the fundamental notion ...

  3. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...

  4. Club set - Wikipedia

    en.wikipedia.org/wiki/Club_set

    The limit of this sequence must in fact also be the limit of the sequence ,,, …, and since each is closed and is uncountable, this limit must be in each , and therefore this limit is an element of the intersection that is above , which shows that the intersection is unbounded. QED.

  5. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  6. Stolz–Cesàro theorem - Wikipedia

    en.wikipedia.org/wiki/Stolz–Cesàro_theorem

    Assume that () is a strictly monotone and divergent sequence (i.e. strictly increasing and approaching +, or strictly decreasing and approaching ) and the following limit exists: lim n → ∞ a n + 1 − a n b n + 1 − b n = l .

  7. Cauchy's limit theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_limit_theorem

    It states that for a converging sequence the sequence of the arithmetic means of its first members converges against the same limit as the original sequence, that is () with implies (+ +) / . [ 1 ] [ 2 ] The theorem was found by Cauchy in 1821, [ 1 ] subsequently a number of related and generalized results were published, in particular by Otto ...

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.