enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of atmospheric dispersion models - Wikipedia

    en.wikipedia.org/wiki/List_of_atmospheric...

    UDM – Urban dispersion model is a Gaussian puff based model for predicting the dispersion of atmospheric pollutants in the range of 10m to 25 km throughout the urban environment. It is developed by the Defense Science and Technology Laboratory for the UK Ministry of Defence. It handles instantaneous, continuous, and pool releases, and can ...

  3. Plume (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Plume_(fluid_dynamics)

    Plumes are used to locate, map, and measure water pollution within the aquifer's total body of water, and plume fronts to determine directions and speed of the contamination's spreading in it. [3] Plumes are of considerable importance in the atmospheric dispersion modelling of air pollution. A classic work on the subject of air pollution plumes ...

  4. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.

  5. Atmospheric dispersion modeling - Wikipedia

    en.wikipedia.org/.../Atmospheric_dispersion_modeling

    The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include: Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class" ), the ambient air temperature, the height to the bottom ...

  6. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...

  7. Boussinesq approximation (water waves) - Wikipedia

    en.wikipedia.org/wiki/Boussinesq_approximation...

    The Boussinesq approximation for water waves takes into account the vertical structure of the horizontal and vertical flow velocity. This results in non-linear partial differential equations, called Boussinesq-type equations, which incorporate frequency dispersion (as opposite to the shallow water equations, which

  8. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    Wave characteristics. Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by √ gh as a function of ⁠ h / λ ⁠. A: phase velocity, B: group velocity, C: phase and group velocity √ gh valid in shallow water.

  9. Water model - Wikipedia

    en.wikipedia.org/wiki/Water_model

    A water model is defined by its geometry, together with other parameters such as the atomic charges and Lennard-Jones parameters. In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent.