Search results
Results from the WOW.Com Content Network
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
Once the greedy choice is made, the problem reduces to finding an optimal solution for the subproblem. If A is an optimal solution to the original problem S containing the greedy choice, then A ′ = A ∖ { 1 } {\displaystyle A^{\prime }=A\setminus \{1\}} is an optimal solution to the activity-selection problem S ′ = { i ∈ S : s i ≥ f 1 ...
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
But in complex situations it can easily fail to find the optimal scheduling. HEFT is essentially a greedy algorithm and incapable of making short-term sacrifices for long term benefits. Some improved algorithms based on HEFT look ahead to better estimate the quality of a scheduling decision can be used to trade run-time for scheduling performance.
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
This optimization algorithm may be used to characterize matroids: if a family F of sets, closed under taking subsets, has the property that, no matter how the sets are weighted, the greedy algorithm finds a maximum-weight set in the family, then F must be the family of independent sets of a matroid.