Search results
Results from the WOW.Com Content Network
New in-memory Python wrapping of SU2 using SWIG with accompanying high-level API. Class enhancements for multiphysics applications, including interpolation and transfer. Free-form deformation (FFD) extensions, including Bézier curves and improved usability. Reorganization of the incompressible solver for future expansion.
A liquid hitting a wall in a container will cause sloshing. The free surface effect is a mechanism which can cause a watercraft to become unstable and capsize. [1]It refers to the tendency of liquids — and of unbound aggregates of small solid objects, like seeds, gravel, or crushed ore, whose behavior approximates that of liquids — to move in response to changes in the attitude of a craft ...
Here σ is the surface tension, n, t and s are unit vectors in a local orthogonal coordinate system (n,t,s) at the free surface (n is outward normal to the free surface while the other two lie in the tangential plane and are mutually orthogonal). The indices 'l' and 'g' denote liquid and gas, respectively and K is the curvature of the free surface.
Damage stability calculations are much more complicated than intact stability. Software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods. The loss of stability from flooding may be due in part to the free surface effect.
Important examples include propellant slosh in spacecraft tanks and rockets (especially upper stages), and the free surface effect (cargo slosh) in ships and trucks transporting liquids (for example oil and gasoline). However, it has become common to refer to liquid motion in a completely filled tank, i.e. without a free surface, as "fuel slosh".
Schematic view of an SPH convolution Flow around cylinder with free surface modelled with SPH. See [1] for similar simulations.. Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows.
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).
In computational fluid dynamics, free-surface modelling (FSM) refers to the numerical modelling of a free surface—a freely moving interface between immiscible fluids—in order to be able to track and locate it. Common methods used in free surface modelling include the level-set method and the volume of fluid method