enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy can be expressed using any energy unit. Among the units commonly used to denote photon energy are the electronvolt (eV) and the joule (as well as its multiples, such as the microjoule). As one joule equals 6.24 × 10 18 eV, the larger units may be more useful in denoting the energy of photons with higher frequency and higher ...

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energyfrequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Lyman–Werner photons - Wikipedia

    en.wikipedia.org/wiki/Lyman–Werner_photons

    A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground electronic state X to excited state B (Lyman) or C (Werner). Radiative decay occurs rapidly. 10–15% of the decays occur into the vibrational continuum. This means that the hydrogen molecule has dissociated.

  5. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...

  6. Template:SI photon units - Wikipedia

    en.wikipedia.org/wiki/Template:SI_photon_units

    Template will not display the string "Table X. " in front of the table's title "SI photon units". 1 = <number> The template will display the table number as part of the table header in the following form: "Table <number>. SI photon units.", where <number> is a placeholder for the number (or other table designation) given as parameter.

  7. Rydberg–Ritz combination principle - Wikipedia

    en.wikipedia.org/wiki/Rydberg–Ritz_combination...

    Absorption or emission of a particle of light or photon corresponds to a transition between two possible energy levels, and the photon energy equals the difference between their two energies. On dividing by hc, the photon wavenumber equals the difference between two terms, each equal to an energy divided by hc or an energy in wavenumber units ...

  8. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    An expression for n as a function of photon energy, symbolically written as n(E), is then determined from the expression for k(E) in accordance to the Kramers–Kronig relations [4] which states that n(E) is the Hilbert transform of k(E). The Forouhi–Bloomer dispersion equations for n(E) and k(E) of amorphous materials are given as:

  9. Angle-resolved photoemission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Angle-resolved...

    The second photon is used to kick these electrons out of the solid so they can be measured with ARPES. By precisely timing the second photon, usually by using frequency multiplication of the low-energy pulsed laser and delay between the pulses by changing their optical paths, the electron lifetime can be determined on the scale below picoseconds.