Search results
Results from the WOW.Com Content Network
For a set of numbers {10, 15, 30, 45, 57, 52 63, 72, 81, 93, 102, 105}, if this set is the whole data population for some measurement, then variance is the population variance 932.743 as the sum of the squared deviations about the mean of this set, divided by 12 as the number of the set members.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
In statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from ...
Then the first, "unexplained" term on the right-hand side of the above formula is the weighted average of the variances, hσ h 2 + (1 − h)σ t 2, and the second, "explained" term is the variance of the distribution that gives μ h with probability h and gives μ t with probability 1 − h.
Because the variance of the estimator of a parameter vector is a matrix, the problem of "minimizing the variance" is complicated. Using statistical theory , statisticians compress the information-matrix using real-valued summary statistics ; being real-valued functions, these "information criteria" can be maximized.
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...