Search results
Results from the WOW.Com Content Network
Andreev reflection, named after the Russian physicist Alexander F. Andreev, is a type of particle scattering which occurs at interfaces between a superconductor (S) and a normal state material (N). It is a charge-transfer process by which normal current in N is converted to supercurrent in S.
The table below shows some of the parameters of common superconductors.X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla.
Ceramic superconductors cannot be bolted or welded together to form superconducting junctions. Ceramic superconductors must be cast in their final shape when created. This may increase production costs. [citation needed] Ceramic superconductors can be more easily driven out of superconductivity by oscillating magnetic fields.
Alexander Fyodorovich Andreev (Russian: Александр Фёдорович Андреев, 10 December 1939 – 14 March 2023) [1] was a Russian theoretical physicist best known for explaining the eponymous Andreev reflection. [2] Andreev was educated at the Moscow Institute of Physics and Technology, starting in 1959 and graduating ahead of ...
The size of the critical current (which can be as large as 100 amperes in a 1-mm wire) depends on the nature and geometry of the specimen and is related to whether the magnetic field produced by the current exceeds the critical field at the surface of the superconductor.
Flux pinning is a phenomenon that occurs when flux vortices in a type-II superconductor are prevented from moving within the bulk of the superconductor, so that the magnetic field lines are "pinned" to those locations. [1] The superconductor must be a type-II superconductor because type-I superconductors cannot be penetrated by magnetic fields. [2]
The penetration depth is determined by the superfluid density, which is an important quantity that determines T c in high-temperature superconductors. If some superconductors have some node in their energy gap, the penetration depth at 0 K depends on magnetic field because superfluid density is changed by magnetic field and vice versa. So ...
Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.