Search results
Results from the WOW.Com Content Network
Andreev reflection, named after the Russian physicist Alexander F. Andreev, is a type of particle scattering which occurs at interfaces between a superconductor (S) and a normal state material (N). It is a charge-transfer process by which normal current in N is converted to supercurrent in S.
Phase diagram (B, T) of a type I superconductor : if B < B c, the medium is superconducting. T c is the critical temperature of a superconductor when there is no magnetic field. The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes ...
The table below shows some of the parameters of common superconductors.X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla.
Ceramic superconductors cannot be bolted or welded together to form superconducting junctions. Ceramic superconductors must be cast in their final shape when created. This may increase production costs. [citation needed] Ceramic superconductors can be more easily driven out of superconductivity by oscillating magnetic fields.
Quasiparticles are scattered at the pair potential which in the simplest model may be assumed to have a step-like shape. The solution of the Bogoliubov-de Gennes equation resembles that of the discussed Heaviside-step potential. In the superconductor normal-metal case this gives rise to Andreev reflection.
Conversely, the (gapless) electron order present in the normal metal is also carried over to the superconductor in that the superconducting gap is lowered near the interface. The microscopic model describing this behavior in terms of single electron processes is called Andreev reflection. It describes how electrons in one material take on the ...
Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.
The size of the critical current (which can be as large as 100 amperes in a 1-mm wire) depends on the nature and geometry of the specimen and is related to whether the magnetic field produced by the current exceeds the critical field at the surface of the superconductor.