Search results
Results from the WOW.Com Content Network
In contrast with comments, docstrings are themselves Python objects and are part of the interpreted code that Python runs. That means that a running program can retrieve its own docstrings and manipulate that information, but the normal usage is to give other programmers information about how to invoke the object being documented in the docstring.
This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased die, a casino roulette, or the first card of a well-shuffled deck.
A VAR with p lags can always be equivalently rewritten as a VAR with only one lag by appropriately redefining the dependent variable. The transformation amounts to stacking the lags of the VAR(p) variable in the new VAR(1) dependent variable and appending identities to complete the precise number of equations. For example, the VAR(2) model
In statistics and econometrics, Bayesian vector autoregression (BVAR) uses Bayesian methods to estimate a vector autoregression (VAR) model. BVAR differs with standard VAR models in that the model parameters are treated as random variables, with prior probabilities, rather than fixed values.
Monty Python references appear frequently in Python code and culture; [190] for example, the metasyntactic variables often used in Python literature are spam and eggs instead of the traditional foo and bar. [190] [191] The official Python documentation also contains various references to Monty Python routines.
Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used ...
Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.
Here, as usual, stands for the conditional expectation of Y given X, which we may recall, is a random variable itself (a function of X, determined up to probability one). As a result, Var ( Y ∣ X ) {\displaystyle \operatorname {Var} (Y\mid X)} itself is a random variable (and is a function of X ).