Search results
Results from the WOW.Com Content Network
Dislocations of edge (left) and screw (right) type. In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms.
The dislocation line is presented in blue, the Burgers vector b in black. Edge dislocations are caused by the termination of a plane of atoms in the middle of a crystal. In such a case, the adjacent planes are not straight, but instead bend around the edge of the terminating plane so that the crystal structure is perfectly ordered on either side.
The vector's magnitude and direction is best understood when the dislocation-bearing crystal structure is first visualized without the dislocation, that is, the perfect crystal structure. In this perfect crystal structure, a rectangle whose lengths and widths are integer multiples of a (the unit cell edge length) is drawn encompassing the site ...
Non-planar movement of edge dislocations is achieved through climb. Since the Burgers vector of a perfect screw dislocation is parallel to the dislocation line, it has an infinite number of possible slip planes (planes containing the dislocation line and the Burgers vector), unlike an edge or mixed dislocation, which has a unique slip plane ...
Two types of dislocations exist: edge and screw dislocations. Edge dislocations form the edge of an extra layer of atoms inside the crystal lattice. Screw dislocations form a line along which the crystal lattice jumps one lattice point. In both cases the dislocation line forms a linear defect through the crystal lattice, but the crystal can ...
Pure-edge and screw dislocations are conceptually straight in order to minimize its length, and through it, the strain energy of the system. Low-angle mixed dislocations, on the other hand, can be thought of as primarily edge dislocation with screw kinks in a stair-case structure (or vice versa), switching between straight pure-edge and pure-screw dislocation segments.
The edge dislocations will rearrange themselves into tilt boundaries, a simple example of a low-angle grain boundary. Grain boundary theory predicts that an increase in boundary misorientation will increase the energy of the boundary but decrease the energy per dislocation.
The existence of a topological defect can be demonstrated whenever the boundary conditions entail the existence of homotopically distinct solutions. Typically, this occurs because the boundary on which the conditions are specified has a non-trivial homotopy group which is preserved in differential equations; the solutions to the differential equations are then topologically distinct, and are ...