enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Epicycloid - Wikipedia

    en.wikipedia.org/wiki/Epicycloid

    The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circlecalled an epicycle—which rolls without slipping around a fixed circle.

  3. Cycloid - Wikipedia

    en.wikipedia.org/wiki/Cycloid

    The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = (⁡) = (⁡), where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).

  4. Nephroid - Wikipedia

    en.wikipedia.org/wiki/Nephroid

    nephroid: tangents as chords of a circle, principle nephroid: tangents as chords of a circle. Similar to the generation of a cardioid as envelope of a pencil of lines the following procedure holds: Draw a circle, divide its perimeter into equal spaced parts with points (see diagram) and number them consecutively.

  5. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.

  6. Epitrochoid - Wikipedia

    en.wikipedia.org/wiki/Epitrochoid

    The epitrochoid with R = 3, r = 1 and d = 1/2. In geometry, an epitrochoid (/ ɛ p ɪ ˈ t r ɒ k ɔɪ d / or / ɛ p ɪ ˈ t r oʊ k ɔɪ d /) is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

  7. Roulette (curve) - Wikipedia

    en.wikipedia.org/wiki/Roulette_(curve)

    If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid . A related concept is a glissette , the curve described by a point attached to a given curve as it slides along two (or more) given curves.

  8. Hypocycloid - Wikipedia

    en.wikipedia.org/wiki/Hypocycloid

    The red path is a hypocycloid traced as the smaller black circle rolls around inside the larger black circle (parameters are R=4.0, r=1.0, and so k=4, giving an astroid). In geometry , a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle.

  9. Cardioid - Wikipedia

    en.wikipedia.org/wiki/Cardioid

    (The generator circle is the inverse curve of the parabola's directrix.) This property gives rise to the following simple method to draw a cardioid: Choose a circle and a point on its perimeter, draw circles containing with centers on , and; draw the envelope of these circles.