enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  3. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The Bézier curve is named after French engineer Pierre Bézier (1910–1999), who used it in the 1960s for designing curves for the bodywork of Renault cars. [3] Other uses include the design of computer fonts and animation. [3] Bézier curves can be combined to form a Bézier spline, or generalized to higher dimensions to form Bézier ...

  4. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  5. Bernstein polynomial - Wikipedia

    en.wikipedia.org/wiki/Bernstein_polynomial

    Bernstein polynomials can be generalized to k dimensions – the resulting polynomials have the form B i 1 (x 1) B i 2 (x 2) ... B i k (x k). [1] In the simplest case only products of the unit interval [0,1] are considered; but, using affine transformations of the line, Bernstein polynomials can also be defined for products [a 1, b 1] × [a 2 ...

  6. Paul de Casteljau - Wikipedia

    en.wikipedia.org/wiki/Paul_de_Casteljau

    Paul de Casteljau (19 November 1930 – 24 March 2022) was a French physicist and mathematician. In 1959, while working at Citroën, he developed an algorithm for evaluating calculations on a certain family of curves, which would later be formalized and popularized by engineer Pierre Bézier, leading to the curves widely known as Bézier curves.

  7. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The geometry of a single bicubic patch is thus completely defined by a set of 16 control points. These are typically linked up to form a B-spline surface in a similar way as Bézier curves are linked up to form a B-spline curve. Simpler Bézier surfaces are formed from biquadratic patches (m = n = 2), or Bézier triangles.

  8. Variation diminishing property - Wikipedia

    en.wikipedia.org/wiki/Variation_diminishing_property

    In other words, for a Bézier curve B defined by the control polygon P, the curve will have no more intersection with any plane as that plane has with P. This may be generalised into higher dimensions. [1] This property was first studied by Isaac Jacob Schoenberg in his 1930 paper, Über variationsvermindernde lineare Transformationen. [2]

  9. For higher degrees of curve, P0 P1 and P2 aren't defined by the grey lines anymore- they're defined by a chain of parent functions that go all the way up to the grey lines through the same algorithm. So these intermediate line segments show how Bezier curves are algorithmically constructed, although mathematically the curve can still be ...