Search results
Results from the WOW.Com Content Network
Most two-sample t-tests are robust to all but large deviations from the assumptions. [22] For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent ...
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
The program provides methods that are appropriate for matched and independent t-tests, [2] survival analysis, [5] matched [6] and unmatched [7] [8] studies of dichotomous events, the Mantel-Haenszel test, [9] and linear regression. [3] The program can generate graphs of the relationships between power, sample size and the detectable alternative ...
The test is named after Frank Wilcoxon (1892–1965) who, in a single paper, proposed both it and the rank-sum test for two independent samples. [3] The test was popularized by Sidney Siegel (1956) in his influential textbook on non-parametric statistics. [4] Siegel used the symbol T for the test statistic, and consequently, the test is ...
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
The simplest application of this equation is in performing Welch's t-test. An improved equation was derived to reduce underestimating the effective degrees of freedom if the pooled sample variances have small degrees of freedom. Examples are jackknife and imputation-based variance estimates [3].