Search results
Results from the WOW.Com Content Network
This phenomenon can be explained by the endosymbiont hypothesis of the origin of mitochondria as prokaryotes internalized by a eukaryotic host cell. In pig heart mitochondria, phosphatidylethanolamine makes up the majority of the inner mitochondrial membrane at 37.0% of the phospholipid composition.
A crista (/ ˈ k r ɪ s t ə /; pl.: cristae) is a fold in the inner membrane of a mitochondrion.The name is from the Latin for crest or plume, and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for chemical reactions to occur on.
Mitochondrial ATP synthase catalyzes ATP synthesis, using an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F 1, and the membrane-spanning component, F o, comprising the proton channel. The catalytic ...
Simplified structure of a mitochondrion. The intermembrane space (IMS) is the space occurring between or involving two or more membranes. [1] In cell biology, it is most commonly described as the region between the inner membrane and the outer membrane of a mitochondrion or a chloroplast.
The mitochondria-associated ER membranes (MAMs), play role in cell death modulation. Mitochondrial outer membrane permeabilization (MOMP), is a reason of the higher matrix Ca 2+ levels, which is acts as a trigger for apoptosis. MOMP is the process before apoptosis, which is accompanied to permeability of the inner membrane of the mitochondria ...
VDAC1's function in calcium ion transport has also been linked to neurodegenerative diseases. In PD, VDAC1 increases calcium ion levels within the mitochondria, resulting in increased mitochondrial permeability, disrupted mitochondrial membrane potential, elevated ROS production, cell death, and neuronal degeneration. [12]
The carrier preprotein is then inserted into the inner mitochondrial membrane in a potential-dependent fashion. [10] The membrane potential is necessary for both insertion of the precursor into the carrier translocase and lateral release of the protein into the lipid phase of the inner mitochondrial membrane, which completes protein translocation.
With mitochondria, the cytosol has an oxidizing environment which converts NADH to NAD+. With these cases, the compartmentalization is physical. Another is to generate a specific micro-environment to spatially or temporally regulate a biological process. As an example, a yeast vacuole is normally acidified by proton transporters on the membrane.