enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,

  3. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  4. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.

  5. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If a solution has been recorded, we can use it directly, otherwise we solve the sub-problem and add its solution to the table. Bottom-up approach : Once we formulate the solution to a problem recursively as in terms of its sub-problems, we can try reformulating the problem in a bottom-up fashion: try solving the sub-problems first and use their ...

  6. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    Despite its worst-case hardness, optimal solutions to very large instances of the problem can be produced with sophisticated algorithms. In addition, many approximation algorithms exist. For example, the first fit algorithm provides a fast but often non-optimal solution, involving placing each item into the first bin in which it will fit.

  7. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.

  8. Talk:Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Talk:Knapsack_problem

    The section should mention the greedy 2-approximation algorithm for the 0-1 case also. In the end of the normal greedy, compare the solution to the most valueable item, and choose this item instead if it is a better solution. 2-bound is proved in "On the approximation ratio of Greedy Knapsack", by Pekka Kilpeläinen.

  9. Continuous knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Continuous_knapsack_problem

    In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.