Search results
Results from the WOW.Com Content Network
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Statistical hypothesis testing plays an important role in the whole of statistics and in statistical inference. For example, Lehmann (1992) in a review of the fundamental paper by Neyman and Pearson (1933) says: "Nevertheless, despite their shortcomings, the new paradigm formulated in the 1933 paper, and the many developments carried out within ...
The larger the number of inferences made, the more likely erroneous inferences become. Several statistical techniques have been developed to address this problem, for example, by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.
Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data . Bayesian inference has found application in a wide range of activities, including science , engineering , philosophy , medicine , sport , and law .
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process . [ 1 ]
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
Statistics subsequently branched out into various directions, including decision theory, Bayesian statistics, exploratory data analysis, robust statistics, and non-parametric statistics. Neyman-Pearson hypothesis testing made significant contributions to decision theory, which is widely employed, particularly in statistical quality control.
In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic. While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and ...