Search results
Results from the WOW.Com Content Network
Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.
Order-5 5-cell honeycomb; 120-cell honeycomb; Order-5 tesseractic honeycomb; Order-4 120-cell honeycomb; Order-5 120-cell honeycomb; Order-4 24-cell honeycomb; Cubic honeycomb honeycomb; Small stellated 120-cell honeycomb; Pentagrammic-order 600-cell honeycomb; Order-5 icosahedral 120-cell honeycomb; Great 120-cell honeycomb
{3,4} Defect 120° {3,5} Defect 60° {3,6} Defect 0° {4,3} Defect 90° {4,4} Defect 0° {5,3} Defect 36° {6,3} Defect 0° A vertex needs at least 3 faces, and an angle defect. A 0° angle defect will fill the Euclidean plane with a regular tiling. By Descartes' theorem, the number of vertices is 720°/defect.
Vertex the (n−5)-face of the 5-polytope; Edge the (n−4)-face of the 5-polytope; Face the peak or (n−3)-face of the 5-polytope; Cell the ridge or (n−2)-face of the 5-polytope; Hypercell or Teron the facet or (n−1)-face of the 5-polytope
The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m 2 + mn + n 2 = (m + n) 2 − mn, depending on one of three symmetry systems: [1] The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.
For example a tetrahedron is a polyhedron with four faces, a pentahedron is a polyhedron with five faces, a hexahedron is a polyhedron with six faces, etc. [16] For a complete list of the Greek numeral prefixes see Numeral prefix § Table of number prefixes in English, in the column for Greek cardinal numbers.
A triangular prism has 6 vertices, 9 edges, and 5 faces. Every prism has 2 congruent faces known as its bases, and the bases of a triangular prism are triangles.The triangle has 3 vertices, each of which pairs with another triangle's vertex, making up another 3 edges.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.