enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural logarithm of 2 - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm_of_2

    In a third layer, the logarithms of rational numbers r = ⁠ a / b ⁠ are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln n √ c = ⁠ 1 / n ⁠ ln(c).. The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2 i close to powers b j of other numbers b is comparatively easy, and series representations of ln(b) are ...

  3. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In such graphs, exponential functions of the form f(x) = a · b x appear as straight lines with slope equal to the logarithm of b. Log-log graphs scale both axes logarithmically, which causes functions of the form f(x) = a · x k to be depicted as straight lines with slope equal to the exponent k. This is applied in visualizing and analyzing ...

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula states that, for any real number x, one has = ⁡ + ⁡, where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  7. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  8. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    For instance, e x can be defined as (+). Or e x can be defined as f x (1), where f x : R → B is the solution to the differential equation ⁠ df x / dt ⁠ (t) = x f x (t), with initial condition f x (0) = 1; it follows that f x (t) = e tx for every t in R.

  9. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    Graph of log 2 x as a function of a positive real number x. In mathematics, the binary logarithm (log 2 n) is the power to which the number 2 must be raised to obtain the value n. That is, for any real number x, = ⁡ =.