enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Regression discontinuity design - Wikipedia

    en.wikipedia.org/.../Regression_discontinuity_design

    In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Classification of machine learning models can be validated by accuracy estimation techniques like the holdout method, which splits the data in a training and test set (conventionally 2/3 training set and 1/3 test set designation) and evaluates the performance of the training model on the test set.

  5. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  6. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    The individual's pre-test probability was more than twice the one of the population sample, although the individual's post-test probability was less than twice the one of the population sample (which is estimated by the positive predictive value of the test of 10%), opposite to what would result by a less accurate method of simply multiplying ...

  7. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  8. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The technique essentially involves using data from, for example, censuses relating to various types of people corresponding to different characteristics (e.g. age, race), in a first step to estimate the relationship between those types and individual preferences (i.e., multi-level regression of the dataset).

  9. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    In probably approximately correct (PAC) learning, one is concerned with whether the sample complexity is polynomial, that is, whether (,,) is bounded by a polynomial in / and /. If N ( ρ , ϵ , δ ) {\displaystyle N(\rho ,\epsilon ,\delta )} is polynomial for some learning algorithm, then one says that the hypothesis space H {\displaystyle ...