enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/HazenWilliams_equation

    The HazenWilliams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  3. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method assumes that the flow going in and out of the system is known and that the pipe length, diameter, roughness and other key characteristics are also known or can be assumed. [1] The method also assumes that the relation between flow rate and head loss is known, but the method does not require any particular relation to be used.

  4. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    Moody's team used the available data (including that of Nikuradse) to show that fluid flow in rough pipes could be described by four dimensionless quantities: Reynolds number, pressure loss coefficient, diameter ratio of the pipe and the relative roughness of the pipe.

  5. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    n is 1.85 for Hazen-Williams and; n is 2 for Darcy–Weisbach. The clockwise specifier (c) means only the flows that are moving clockwise in our loop, while the counter-clockwise specifier (cc) is only the flows that are moving counter-clockwise. This adjustment doesn't solve the problem, since most networks have several loops.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. [1] The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also ...

  7. Allen Hazen - Wikipedia

    en.wikipedia.org/wiki/Allen_Hazen

    The equation uses an empirically derived constant for the “roughness” of the pipe walls which became known as the Hazen-Williams coefficient. [5] [6] In 1908, Hazen was appointed by President Theodore Roosevelt to a panel of expert engineers to inspect the construction progress on the Panama Canal with President-elect William H. Taft. Hazen ...

  8. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The most common equation used to calculate major head losses is the Darcy–Weisbach equation. Older, more empirical approaches are the HazenWilliams equation and the Prony equation. For relatively short pipe systems, with a relatively large number of bends and fittings, minor losses can easily exceed major losses.

  9. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    The Chézy Formula is a semi-empirical resistance equation [1] [2] which estimates mean flow velocity in open channel conduits. [3] The relationship was conceptualized and developed in 1768 by French physicist and engineer Antoine de Chézy (1718–1798) while designing Paris's water canal system.