Search results
Results from the WOW.Com Content Network
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
A more general definition can be given in terms of conditional expectation. Consider a function : [,] satisfying (()) = [] for almost all . Then the conditional probability distribution is given by
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.
If g is a general function, then the probability that g(X) is valued in a set of real numbers K equals the probability that X is valued in g −1 (K), which is given by (). Under various conditions on g , the change-of-variables formula for integration can be applied to relate this to an integral over K , and hence to identify the density of g ...
Given two events A and B from the sigma-field of a probability space, with the unconditional probability of B being greater than zero (i.e., P(B) > 0), the conditional probability of A given B (()) is the probability of A occurring if B has or is assumed to have happened. [5]
In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.