enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Netflix Prize - Wikipedia

    en.wikipedia.org/wiki/Netflix_Prize

    The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings without any other information about the users or films, i.e. without the users being identified except by numbers assigned for the contest.

  3. Cold start (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Cold_start_(recommender...

    The cold start problem is a well known and well researched problem for recommender systems.Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items (e-commerce, films, music, books, news, images, web pages) that are likely of interest to the user.

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    A dataset for NLP and climate change media researchers The dataset is made up of a number of data artifacts (JSON, JSONL & CSV text files & SQLite database) Climate news DB, Project's GitHub repository [395] ADGEfficiency Climatext Climatext is a dataset for sentence-based climate change topic detection. HF dataset [396] University of Zurich ...

  5. Recommender system - Wikipedia

    en.wikipedia.org/wiki/Recommender_system

    The effectiveness of recommendation approaches is then measured based on how well a recommendation approach can predict the users' ratings in the dataset. While a rating is an explicit expression of whether a user liked a movie, such information is not available in all domains.

  6. Gravity R&D - Wikipedia

    en.wikipedia.org/wiki/Gravity_R&D

    The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings. The prize would be awarded to the team achieving over 10% improvement over Netflix's own Cinematch algorithm. The team "Gravity" was the front runner during January—May 2007. [2]

  7. Category:Netflix templates - Wikipedia

    en.wikipedia.org/wiki/Category:Netflix_templates

    [[Category:Netflix templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Netflix templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.

  8. Collaborative filtering - Wikipedia

    en.wikipedia.org/wiki/Collaborative_filtering

    In a recommendation system where everyone can give the ratings, people may give many positive ratings for their own items and negative ratings for their competitors'. It is often necessary for the collaborative filtering systems to introduce precautions to discourage such manipulations.

  9. Category:Data templates - Wikipedia

    en.wikipedia.org/wiki/Category:Data_templates

    Please sort the templates by country, and use a second sortkey for data templates of entities within the country, or of a subtopic about the country. Templates below with a name starting with "Data " are members of a family of templates, see any of these templates. See also: Category:Data retrieval templates; Wikipedia:WikiProject Tabular Data