enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differintegral - Wikipedia

    en.wikipedia.org/wiki/Differintegral

    is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral.

  3. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The theory of fractional integration for periodic functions (therefore including the "boundary condition" of repeating after a period) is given by the Weyl integral. It is defined on Fourier series , and requires the constant Fourier coefficient to vanish (thus, it applies to functions on the unit circle whose integrals evaluate to zero).

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  5. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.

  6. List of integrals of rational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    These reduction formulas can be used for integrands having integer and/or fractional exponents. Special cases of these reductions formulas can be used for integrands of the form ( a + b x + c x 2 ) p {\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}} when b 2 − 4 a c = 0 {\displaystyle b^{2}-4\,a\,c=0} by setting m to 0.

  7. Katugampola fractional operators - Wikipedia

    en.wikipedia.org/wiki/Katugampola_fractional...

    for < and ⁡ >.. These are the fractional generalizations of the -fold left- and right-integrals of the form ()and for ,respectively. Even though the integral operators in question are close resemblance of the famous Erdélyi–Kober operator, it is not possible to obtain the Hadamard fractional integrals as a direct consequence of the Erdélyi–Kober operators.

  8. Weyl integral - Wikipedia

    en.wikipedia.org/wiki/Weyl_integral

    In mathematics, the Weyl integral (named after Hermann Weyl) is an operator defined, as an example of fractional calculus, on functions f on the unit circle having integral 0 and a Fourier series. In other words there is a Fourier series for f of the form

  9. Erdelyi–Kober operator - Wikipedia

    en.wikipedia.org/wiki/Erdelyi–Kober_operator

    In mathematics, an Erdélyi–Kober operator is a fractional integration operation introduced by Arthur Erdélyi and Hermann Kober . The Erdélyi–Kober fractional integral is given by x − ν − α + 1 Γ ( α ) ∫ 0 x ( t − x ) α − 1 t − α − ν f ( t ) d t {\displaystyle {\frac {x^{-\nu -\alpha +1}}{\Gamma (\alpha )}}\int _{0 ...