Search results
Results from the WOW.Com Content Network
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Metals are insoluble in water or organic solvents, unless they undergo a reaction with them. Typically, this is an oxidation reaction that robs the metal atoms of their itinerant electrons, destroying the metallic bonding. However metals are often readily soluble in each other while retaining the metallic character of their bonding.
Chpt 8 & 19 [2]: Chpt 7 & 8 Metals are typically ductile (can be drawn into wires) and malleable (they can be hammered into thin sheets). [3] A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride. [4]
These metals, such as iron, aluminium, titanium, sodium, calcium, and the lanthanides, would rather bond with fluorine than iodine. They form stable products with hard bases, which are bases with ionic bonds. They target molecules such as phospholipids, nucleic acids, and ATP. Class B metals are metals that form soft acids. [2]
The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.
For alloys containing transition metal elements there is a difficulty in interpretation of the Hume-Rothery electron concentration rule, as the values of e/a values (number of itinerant electrons per atom) for transition metals have been quite controversial for a long time, and no satisfactory solutions have yet emerged. [9] [10]
In metallurgy, refining consists of purifying an impure metal. It is to be distinguished from other processes such as smelting and calcining in that those two involve a chemical change to the raw material, whereas in refining the final material is chemically identical to the raw material.
The following outline acts as an overview of and topical guide to chemistry: . Chemistry is the science of atomic matter (matter that is composed of chemical elements), especially its chemical reactions, but also including its properties, structure, composition, behavior, and changes as they relate to the chemical reactions.