Search results
Results from the WOW.Com Content Network
The method has also revealed the structure and function of many biological molecules, including vitamins, drugs, proteins and nucleic acids such as DNA. X-ray crystallography is still the primary method for characterizing the atomic structure of materials and in differentiating materials that appear similar in other experiments.
X-ray crystallography is the primary method for determining the molecular conformations of biological macromolecules, particularly protein and nucleic acids such as DNA and RNA. The double-helical structure of DNA was deduced from crystallographic data.
Myoglobin sketch Alpha helix. 1958 – Myoglobin was the very first crystal structure of a protein molecule. [2] Myoglobin cradles an iron-containing heme group that reversibly binds oxygen for use in powering muscle fibers, and those first crystals were of myoglobin from the sperm whale, whose muscles need copious oxygen storage for deep dives.
Photo 51 is an X-ray based fiber diffraction image of a paracrystalline gel composed of DNA fiber [1] taken by Raymond Gosling, [2] [3] a postgraduate student working under the supervision of Maurice Wilkins and Rosalind Franklin at King's College London, while working in Sir John Randall's group.
The most prominent techniques are X-ray crystallography, nuclear magnetic resonance, and electron microscopy. Through the discovery of X-rays and its applications to protein crystals, structural biology was revolutionized, as now scientists could obtain the three-dimensional structures of biological molecules in atomic detail. [2]
Left, the major steps involved in DNA structure determination by X-ray crystallography showing the important role played by molecular models of DNA structure in this iterative process. Right, an image of actual A- and B- DNA X-ray patterns obtained from oriented and hydrated DNA fibers (courtesy of Dr. Herbert R. Wilson, FRS- see refs. list).
Using X-ray crystallography, the structure of DNA was discovered by James Watson and Francis Crick with the help of previously documented experimental evidence by Maurice Wilkins and Rosalind Franklin. [9] Knowledge of the structure of DNA led scientists to examine the nature of genetic coding and, in turn, understand the process of protein ...
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...