enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    In this case, the three-acceleration vector is perpendicular to the three-velocity vector, = and the square of proper acceleration, expressed as a scalar invariant, the same in all reference frames, = + /, becomes the expression for circular motion, =. or, taking the positive square root and using the three-acceleration, we arrive at the proper ...

  3. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The radial acceleration (perpendicular to direction of motion) is given by = =. It is directed towards the center of the rotational motion, and is often called the centripetal acceleration . The angular acceleration is caused by the torque , which can have a positive or negative value in accordance with the convention of positive and negative ...

  4. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    and are the masses of objects 1 and 2, and is the specific angular momentum of object 2 with respect to object 1. The parameter θ {\displaystyle \theta } is known as the true anomaly , p {\displaystyle p} is the semi-latus rectum , while e {\displaystyle e} is the orbital eccentricity , all obtainable from the various forms of the six ...

  5. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  8. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Einstein's equations can also be solved on a computer using sophisticated numerical methods. [1] [2] [3] Given sufficient computer power, such solutions can be more accurate than post-Newtonian solutions. However, such calculations are demanding because the equations must generally be solved in a four-dimensional space.