Search results
Results from the WOW.Com Content Network
There are two approaches to statistical inference: model-based inference and design-based inference. [2] [3] [4] Both approaches rely on some statistical model to represent the data-generating process. In the model-based approach, the model is taken to be initially unknown, and one of the goals is to select an appropriate model for inference ...
Grammar induction (or grammatical inference) [1] is the process in machine learning of learning a formal grammar (usually as a collection of re-write rules or productions or alternatively as a finite-state machine or automaton of some kind) from a set of observations, thus constructing a model which accounts for the characteristics of the observed objects.
Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.
P. Westfall, R. Tobias, R. Wolfinger (2011) Multiple comparisons and multiple testing using SAS, 2nd edn, SAS Institute; A gallery of examples of implausible correlations sourced by data dredging; An xkcd comic about the multiple comparisons problem, using jelly beans and acne as an example
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to ...
Stan (software) – open-source package for obtaining Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo. It is somewhat like BUGS, but with a different language for expressing models and a different sampler for sampling from their posteriors; Statistical Lab – R-based and focusing on educational purposes
This allows for inference where, in the long-run, we can define that the combined results of multiple frequentist inferences to mean that a 95% confidence interval literally means the true mean lies in the confidence interval 95% of the time, but not that the mean is in a particular confidence interval with 95% certainty. This is a popular ...