Search results
Results from the WOW.Com Content Network
With the aid of these rules the UV absorption maximum can be predicted, for example in these two compounds: [8] In the compound on the left, the base value is 214 nm (a heteroannular diene). This diene group has 4 alkyl substituents (labeled 1,2,3,4) and the double bond in one ring is exocyclic to the other (adding 5 nm for an exocyclic double ...
UV-Vis spectroscopy is routinely used in analytical chemistry for the quantitative determination of diverse analytes or sample, such as transition metal ions, highly conjugated organic compounds, and biological macromolecules. Spectroscopic analysis is commonly carried out in solutions but solids and gases may also be studied.
If Albert Einstein's photoelectric law is applied to a free molecule, the kinetic energy of an emitted photoelectron is given by =, where h is the Planck constant, ν is the frequency of the ionizing light, and I is an ionization energy for the formation of a singly charged ion in either the ground state or an excited state.
This method requires a spectrophotometer capable of measuring in the UV region with quartz cuvettes. [3]: 135 Ultraviolet-visible (UV-vis) spectroscopy involves energy levels that excite electronic transitions. Absorption of UV-vis light excites molecules that are in ground-states to their excited-states. [5]
It is the link between the electrochemistry and the UV-Vis absorption spectroscopy. [3] Devices to conduct the radiation beam: lenses, mirrors and/or optical fibers. The last ones conduct electromagnetic radiation over great distances with hardly any losses.
Ultraviolet–visible spectroscopy (UV–vis) can distinguish between enantiomers by showing a distinct Cotton effect for each isomer. UV–vis spectroscopy sees only chromophores, so other molecules must be prepared for analysis by chemical addition of a chromophore such as anthracene.
The cuvette is filled with sample, light is passed through the sample and intensity readings are taken. The slope spectroscopy technique can be applied using the same methods as in absorption spectroscopy. With the advent of accurate linear stages, variable pathlength absorption spectroscopy is easily applied experimentally.
Figure 1: Simplified schemes of the Variable UV-Vis detector compared to PhotoDiode Array detector. In the Variable UV-Vis the entire optical bench is located before the flow cell whereas in the diode array the flow rate is positioned before the main optical bench. A schematic of the optical systems is shown in Figure 1.