enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kelvin equation - Wikipedia

    en.wikipedia.org/wiki/Kelvin_equation

    The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.

  3. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p. In many situations in aerodynamics and hydrodynamics, the pressure coefficient at a point near a body is independent of body size.

  4. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  5. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    To provide a rough example of how much pressure this is, to melt ice at −7 °C (the temperature many ice skating rinks are set at) would require balancing a small car (mass ~ 1000 kg [19]) on a thimble (area ~ 1 cm 2). This shows that ice skating cannot be simply explained by pressure-caused melting point depression, and in fact the mechanism ...

  6. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Δp is the pressure difference between the two ends, L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.

  9. Laplace pressure - Wikipedia

    en.wikipedia.org/wiki/Laplace_pressure

    The Laplace pressure is determined from the Young–Laplace equation given as [2] = (+), where and are the principal radii of curvature and (also denoted as ) is the surface tension. Although signs for these values vary, sign convention usually dictates positive curvature when convex and negative when concave.