Search results
Results from the WOW.Com Content Network
DNA photoionization is the phenomenon according to which ultraviolet radiation absorbed directly by a DNA system (mononucleotide, single or double strand, G-quadruplex…) induces the ejection of electrons, leaving electron holes on the nucleic acid. The loss of an electron gives rise to a radical cation on the DNA.
Photons are massless particles that can move no faster than the speed of light measured in vacuum. The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. [2]
Since most of the ionized atoms are due to the secondary beta particles, photons are indirectly ionizing radiation. [10] Radiated photons are called gamma rays if they are produced by a nuclear reaction, subatomic particle decay, or radioactive decay within the nucleus. They are called x-rays if produced outside the nucleus. The generic term ...
The four bases found in DNA are adenine (A), cytosine (C), guanine (G) and thymine (T). These four bases are attached to the sugar-phosphate to form the complete nucleotide, as shown for adenosine monophosphate. Adenine pairs with thymine and guanine pairs with cytosine, forming A-T and G-C base pairs. [17] [18]
Upon striking the sample, photons that match the energy gap of the molecules present (green light in this example) are absorbed, exciting the molecules. Other photons are scattered (not shown here) or transmitted unaffected; if the radiation is in the visible region (400–700 nm), the transmitted light appears as the complementary color (here ...
The typical observed radiant emittance of biological tissues in the visible and ultraviolet frequencies ranges from 10 −17 to 10 −23 W/cm 2 with a photon count from a few to nearly 1000 photons per cm 2 in the range of 200 nm to 800 nm.
Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...
Conversely, certain bacteria utilize photolyase, powered by sunlight, to repair pyrimidine dimer-induced DNA damage. Unrepaired lesions may lead to erroneous nucleotide incorporation by polymerase machinery. Overwhelming DNA damage can precipitate mutations within an organism's genome, potentially culminating in cancer cell formation. [7]