Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
The first one perturbs the two boundary functions imposed at x = 0 and x = x 1 (condition 1-a) with a Nth-order polynomial in y: p 1, p 2 in such a way that: f 1 ' = f 1 + p 1, f 2 ' = f 2 + p 2, where the norm of the two perturbation functions are smaller than the accuracy needed at the boundaries.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration.
The Riemann zeta function is defined for real > by the convergent series = = = + + +, which for = would be the harmonic series. It can be extended by analytic continuation to a holomorphic function on all complex numbers except x = 1 {\displaystyle x=1} , where the extended function has a simple pole .
Each problem p in the family is represented by a data-vector Data(p), e.g., the real-valued coefficients in matrices and vectors representing the function f and the feasible region G. The size of a problem p, Size(p), is defined as the number of elements (real numbers) in Data(p). The following assumptions are needed: G (the feasible region) is:
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
The Fuchsian theory of linear differential equations, which is named after Lazarus Immanuel Fuchs, provides a characterization of various types of singularities and the relations among them. At any ordinary point of a homogeneous linear differential equation of order n {\displaystyle n} there exists a fundamental system of n {\displaystyle n ...