Search results
Results from the WOW.Com Content Network
Figure 1. The seven transmembrane α-helix structure of a G-protein-coupled receptor. A neurotransmitter receptor (also known as a neuroreceptor) is a membrane receptor protein [1] that is activated by a neurotransmitter. [2] Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which there are ...
An agonist is a chemical capable of binding to a receptor, such as a neurotransmitter receptor, and initiating the same reaction typically produced by the binding of the endogenous substance. [68] An agonist of a neurotransmitter will thus initiate the same receptor response as the transmitter.
Once released, a neurotransmitter enters the synapse and encounters receptors. Neurotransmitter receptors can either be ionotropic or g protein coupled. Ionotropic receptors allow for ions to pass through when agonized by a ligand. The main model involves a receptor composed of multiple subunits that allow for coordination of ion preference.
Receptors may bind with some molecules (ligands) or may interact with physical agents like light, mechanical temperature, pressure, etc. Reception occurs when the target cell (any cell with a receptor protein specific to the signal molecule) detects a signal, usually in the form of a small, water-soluble molecule, via binding to a receptor ...
A neurotransmitter can be thought of as a key, and a receptor as a lock: the same neurotransmitter can activate multiple types of receptors. Receptors can be classified broadly as excitatory (causing an increase in firing rate), inhibitory (causing a decrease in firing rate), or modulatory (causing long-lasting effects not directly related to ...
A synapse during re-uptake. Note that some neurotransmitters are lost and not reabsorbed. Reuptake is the reabsorption of a neurotransmitter by a neurotransmitter transporter located along the plasma membrane of an axon terminal (i.e., the pre-synaptic neuron at a synapse) or glial cell after it has performed its function of transmitting a neural impulse.
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events.Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. [1]
The GABA neurotransmitter mediates the fast synaptic inhibition in the central nervous system. When GABA is released from its pre-synaptic cell, it will bind to a receptor (most likely the GABA A receptor) that causes the post-synaptic cell to hyperpolarize (stay below its action potential threshold). This will counteract the effect of any ...