enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.

  4. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Backtracking is the process of traversing the tree in preorder, depth first. Any systematic rule for choosing column c in this procedure will find all solutions, but some rules work much better than others. To reduce the number of iterations, Knuth suggests that the column-choosing algorithm select a column with the smallest number of 1s in it.

  5. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [12] [13] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.

  6. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  8. Monte Carlo tree search - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_tree_search

    Such methods were then explored and successfully applied to heuristic search in the field of automated theorem proving by W. Ertel, J. Schumann and C. Suttner in 1989, [8] [9] [10] thus improving the exponential search times of uninformed search algorithms such as e.g. breadth-first search, depth-first search or iterative deepening.

  9. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...