Search results
Results from the WOW.Com Content Network
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Smooth manifolds" The following 19 pages are in this category, out of 19 ...
Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations.The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric.
Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds (also called smooth manifolds) generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the ...