Search results
Results from the WOW.Com Content Network
Myelin basic protein (MBP) is a protein believed [weasel words] to be important in the process of myelination of nerves in the nervous system. The myelin sheath is a multi-layered membrane, unique to the nervous system, that functions as an insulator to greatly increase the velocity of axonal impulse conduction . [ 5 ]
The myelin sheath is a multi-layered membrane, unique to the nervous system, that functions as an insulator to greatly increase the velocity of axonal impulse conduction. . Myelin protein zero, absent in the central nervous system, [14] is a major component of the myelin sheath in peripheral nerv
Myelination is only prevalent in a few brain regions at birth and continues into adulthood. The entire process is not complete until about 25–30 years of age. [24] Myelination is an important component of intelligence, and white matter quantity may be positively correlated with IQ test results in children. [24]
Following terminal differentiation in vivo, mature oligodendrocytes wrap around and myelinate axons. In vitro , oligodendrocytes create an extensive network of myelin-like sheets. The process of differentiation can be observed both through morphological changes and cell surface markers specific to the discrete stage of differentiation, though ...
White matter is named for its relatively light appearance resulting from the lipid content of myelin. However, the tissue of the freshly cut brain appears pinkish-white to the naked eye because myelin is composed largely of lipid tissue veined with capillaries. Its white color in prepared specimens is due to its usual preservation in formaldehyde.
Using structural MRI, quantitative assessment of a number of developmental processes can be carried out including defining growth patterns, [9] and characterizing the sequence of myelination. [10] These data complement evidence from Diffusion Tensor Imaging (DTI) studies that have been widely used to investigate the development of white matter.
Myelin's best known function is to increase the rate at which information, encoded as electrical charges, passes along the axon's length. Myelin achieves this by eliciting saltatory conduction. [1] Saltatory conduction refers to the fact that electrical impulses 'jump' along the axon, over long myelin sheaths, from one node of Ranvier to the next.
This organization demands a tight developmental control and the formation of a variety of specialized zones of contact between different areas of the myelinating cell membrane. Each node of Ranvier is flanked by paranodal regions where helicoidally wrapped glial loops are attached to the axonal membrane by a septate-like junction.