enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    satisfying respectively y(0) = 0, y ′ (0) = 1 and y(0) = 1, y ′ (0) = 0. It follows from the theory of ordinary differential equations that the first solution, sine, has the second, cosine, as its derivative, and it follows from this that the derivative of cosine is the negative of the sine. The identity is equivalent to the assertion that ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Using the squeeze theorem, [4] we can prove that ⁡ =, which is a formal restatement of the approximation ⁡ for small values of θ. A more careful application of the squeeze theorem proves that lim θ → 0 tan ⁡ ( θ ) θ = 1 , {\displaystyle \lim _{\theta \to 0}{\frac {\tan(\theta )}{\theta }}=1,} from which we conclude that tan ⁡ ( θ ...

  6. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    Grinberg used his theorem to find a non-Hamiltonian cubic polyhedral graph with 44 vertices, 24 faces, and cyclic edge connectivity four, and another example (shown in the figure) with 46 vertices, 25 faces, and cyclic edge connectivity five, the maximum possible cyclic edge connectivity for a cubic planar graph other than .

  7. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    We conclude that for 0 < θ < ⁠ 1 / 2 ⁠ π, the quantity sin(θ)/θ is always less than 1 and always greater than cos(θ). Thus, as θ gets closer to 0, sin(θ)/θ is "squeezed" between a ceiling at height 1 and a floor at height cos θ, which rises towards 1; hence sin(θ)/θ must tend to 1 as θ tends to 0 from the positive side:

  8. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).

  9. Kleene's recursion theorem - Wikipedia

    en.wikipedia.org/wiki/Kleene's_recursion_theorem

    This indicates that, if f(n) is m, then f(n + 1) is (n + 1)m, so that the pair (n + 1, (n + 1)m) is in the graph of f. Unlike the base case f(0) = 1, the recursive operator requires some information about f(n) before it defines a value of f(n + 1). The first recursion theorem (in particular, part 1) states that there is a set F such that Φ(F) = F.