Search results
Results from the WOW.Com Content Network
[1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions.
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
By Euler's formula for planar graphs, G has 3n − 6 edges; equivalently, if one defines the deficiency of a vertex v in G to be 6 − deg(v), the sum of the deficiencies is 12. Since G has at least four vertices and all faces of G are triangles, it follows that every vertex in G has degree at least three.
The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics.It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph.
Integration by substitution can be derived from the fundamental theorem of calculus as follows. Let and be two functions satisfying the above hypothesis that is continuous on and ′ is integrable on the closed interval [,].
Every cycle graph is a circulant graph, as is every crown graph with number of vertices congruent to 2 modulo 4.. The Paley graphs of order n (where n is a prime number congruent to 1 modulo 4) is a graph in which the vertices are the numbers from 0 to n − 1 and two vertices are adjacent if their difference is a quadratic residue modulo n.
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.