Search results
Results from the WOW.Com Content Network
A stack may be implemented as, for example, a singly linked list with a pointer to the top element. A stack may be implemented to have a bounded capacity. If the stack is full and does not contain enough space to accept another element, the stack is in a state of stack overflow. A stack is needed to implement depth-first search.
The implementation of variables is important for any programming language, but for stack-oriented languages, it is of special concern, as there is only one way to interact with data. The way variables are implemented in stack-oriented languages such as PostScript usually involves a separate, specialized stack which holds dictionaries of key ...
4.1 Example: implementation of the abstract stack. ... As an example, here is an implementation of the abstract stack above in the C programming language.
*/ /* This implementation does not implement composite functions, functions with a variable number of arguments, or unary operators. */ while there are tokens to be read: read a token if the token is: - a number: put it into the output queue - a function: push it onto the operator stack - an operator o 1: while ( there is an operator o 2 at the ...
The stack is often used to store variables of fixed length local to the currently active functions. Programmers may further choose to explicitly use the stack to store local data of variable length. If a region of memory lies on the thread's stack, that memory is said to have been allocated on the stack, i.e. stack-based memory allocation (SBMA).
When used to implement a set of stacks, the structure is called a spaghetti stack, cactus stack or saguaro stack (after the saguaro, a kind of cactus). [1] Parent pointer trees are also used as disjoint-set data structures. The structure can be regarded as a set of singly linked lists that share part of their structure, in particular, their ...
Newer processors contain a dedicated stack engine to optimize stack operations. Pentium M was the first x86 processor to introduce a stack engine. In its implementation, the stack pointer is split among two registers: ESP O , which is a 32-bit register, and ESP d , an 8-bit delta value that is updated directly by stack operations.
In order to implement general-purpose coroutines, a second call stack must be obtained, which is a feature not directly supported by the C language. A reliable (albeit platform-specific) way to achieve this is to use a small amount of inline assembly to explicitly manipulate the stack pointer during initial creation of the coroutine.