Search results
Results from the WOW.Com Content Network
A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins. The sequence of amino acids that make up a helical region of the protein's secondary structure are plotted in a rotating manner where the angle of rotation between consecutive amino acids is 100°, so that the final ...
The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen ...
As well as the triose isomerase ribbon drawing at the right, other hand-drawn examples depicted prealbumin, flavodoxin, and Cu,Zn superoxide dismutase. In 1982, Arthur M. Lesk and co-workers first enabled the automatic generation of ribbon diagrams through a computational implementation that uses Protein Data Bank files as input. [7]
The same operators can be used to combine named selections into a new selection; e.g. if sele alpha, name ca and sele helix, ss h are already defined, then sele alpha_not_helix, alpha not helix selects alpha carbons not in a helix. There are also a number of selection operators used for creating local selections according to defined criteria.
Such a clustering is alternatively described in the ABEGO system, where each letter stands for α (and 3 10) helix, right-handed β sheets (and extended structures), left-handed helixes, left-handed sheets, and finally unplottable cis peptide bonds sometimes seen with proline; it has been used in the classification of motifs [14] and more ...
Alpha-helical proteins are present in the inner membranes of bacterial cells or the plasma membrane of eukaryotic cells, and sometimes in the bacterial outer membrane. [5] This is the major category of transmembrane proteins. In humans, 27% of all proteins have been estimated to be alpha-helical membrane proteins. [6]
These methods were based on the helix- or sheet-forming propensities of individual amino acids, sometimes coupled with rules for estimating the free energy of forming secondary structure elements. The first widely used techniques to predict protein secondary structure from the amino acid sequence were the Chou–Fasman method [ 17 ] [ 18 ] [ 19 ...
The amino acids in a 3 10-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 120° turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 Å (0.20 nm) along the helical axis, and has 10 atoms in the ring formed by making the hydrogen bond.