enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural language processing - Wikipedia

    en.wikipedia.org/wiki/Natural_language_processing

    Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The transformer has had great success in natural language processing (NLP). Many large language models such as GPT-2, GPT-3, GPT-4, AlbertAGPT, Claude, BERT, XLNet, RoBERTa and ChatGPT demonstrate the ability of transformers to perform a wide variety of NLP-related subtasks and their related real-world applications, including: machine translation

  4. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  5. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  6. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    blog.research.google /2020 /02 /exploring-transfer-learning-with-t5.html T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the ...

  7. Deep linguistic processing - Wikipedia

    en.wikipedia.org/wiki/Deep_linguistic_processing

    The rapid creation of robust and wide-coverage machine learning NLP tools requires substantially lesser amount of manual labor. Thus deep linguistic processing methods have received less attention. However, it is the belief of some computational linguists [ who? ] that in order for computers to understand natural language or inference ...

  8. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Deep learning methods, often using supervised learning with labeled datasets, have been shown to solve tasks that involve handling complex, high-dimensional raw input data (such as images) with less manual feature engineering than prior methods, enabling significant progress in several fields including computer vision and natural language ...

  9. Neural machine translation - Wikipedia

    en.wikipedia.org/wiki/Neural_machine_translation

    Or one can include one or several example translations in the prompt before asking to translate the text in question. This is then called one-shot or few-shot learning, respectively. For example, the following prompts were used by Hendy et al. (2023) for zero-shot and one-shot translation: [35]