Search results
Results from the WOW.Com Content Network
Linus Carl Pauling was born on February 28, 1901, in Portland, Oregon, [13] [14] the firstborn child of Herman Henry William Pauling (1876–1910) and Lucy Isabelle "Belle" Darling (1881–1926). [ 15 ] : 22 He was named "Linus Carl", in honor of Lucy's father, Linus, and Herman's father, Carl.
One of Pauling's examples is olivine, M 2 SiO 4, where M is a mixture of Mg 2+ at some sites and Fe 2+ at others. The structure contains distinct SiO 4 tetrahedra which do not share any oxygens (at corners, edges or faces) with each other.
The most famous of these early models was by Linus Pauling and Robert Corey in 1953 in which they proposed a triple helix with the phosphate backbone on the inside, and the nucleotide bases pointing outwards. [9] [10] A broadly similar, but detailed structure was also proposed by Bruce Fraser that same year. [11]
In 1951, Pauling published the structure of the alpha helix, a fundamentally important structural component of proteins. In early 1953, Pauling published a triple helix model of DNA, which subsequently turned out to be incorrect. [3] Both Crick, and particularly Watson, thought that they were racing against Pauling to discover the structure of DNA.
Robert Brainard Corey (August 19, 1897 – April 23, 1971) was an American biochemist, mostly known for his role in discovery of the α-helix and the β-sheet with Linus Pauling. Also working with Pauling was Herman Branson. Their discoveries were remarkably correct, with even the bond lengths being accurate until about 40 years later.
Linus Pauling published in 1931 his landmark paper on valence bond theory: "On the Nature of the Chemical Bond". Building on this article, Pauling's 1939 textbook: On the Nature of the Chemical Bond would become what some have called the bible of modern chemistry. This book helped experimental chemists to understand the impact of quantum theory ...
There are two possible structures for hydrogen cyanide, HCN and CNH, differing only as to the position of the hydrogen atom. The structure with hydrogen attached to nitrogen, CNH, leads to formal charges of -1 on carbon and +1 on nitrogen, which would be partially compensated for by the electronegativity of nitrogen and Pauling calculated the net charges on H, N and C as -0.79, +0.75 and +0.04 ...
The crystal structures of simple ionic solids have long been rationalised in terms of Pauling's rules, first set out in 1929 by Linus Pauling. [3] For metals and semiconductors one has different rules involving valence electron concentration. However, prediction and rationalization are rather different things.