Search results
Results from the WOW.Com Content Network
A geometric way of deriving the sine or cosine of 45° is by considering an isosceles right triangle with leg length 1. Since two of the angles in an isosceles triangle are equal, if the remaining angle is 90° for a right triangle, then the two equal angles are each 45°.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The formulas for addition and subtraction involving a small angle may be used for interpolating between trigonometric table values: Example: sin(0.755) = (+) + () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given.
The y-axis ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the x-axis abscissas of A, C and E are cos θ, cot θ and sec θ, respectively. Signs of trigonometric functions in each quadrant. Mnemonics like "all students take calculus" indicates when sine, cosine, and tangent are positive from quadrants I to IV. [8]
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ( 0 ) = 0 {\displaystyle \sin(0)=0} .
Abu al-Wafa had sine tables in 0.25° increments, to 8 decimal places of accuracy, and accurate tables of tangent values. [16] He also made important innovations in spherical trigonometry [ 17 ] [ 18 ] [ 19 ] The Persian polymath Nasir al-Din al-Tusi has been described as the creator of trigonometry as a mathematical discipline in its own right.
The formula is given in verses 17–19, chapter VII, Mahabhaskariya of Bhāskara I. A translation of the verses is given below: [3] (Now) I briefly state the rule (for finding the bhujaphala and the kotiphala, etc.) without making use of the Rsine-differences 225, etc. Subtract the degrees of a bhuja (or koti) from the degrees of a half circle (that is, 180 degrees).
A significant improvement is to use the following modification to the above, a trick (due to Singleton [2]) often used to generate trigonometric values for FFT implementations: c 0 = 1 s 0 = 0 c n+1 = c n − (α c n + β s n) s n+1 = s n + (β c n − α s n) where α = 2 sin 2 (π/N) and β = sin(2π/N).