Search results
Results from the WOW.Com Content Network
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]
The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear . [ 1 ]
A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The Gudermannian function is a sigmoid function, and as such is sometimes used as an activation function in machine learning. The (scaled and shifted) Gudermannian function is the cumulative distribution function of the hyperbolic secant distribution. A function based on the Gudermannian provides a good model for the shape of spiral galaxy arms ...
The swish paper was then updated to propose the activation with the learnable parameter β. In 2017, after performing analysis on ImageNet data, researchers from Google indicated that using this function as an activation function in artificial neural networks improves the performance, compared to ReLU and sigmoid functions. [1]
Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.