Search results
Results from the WOW.Com Content Network
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.
Suppose that F is a static vector field, that is, a vector-valued function with Cartesian coordinates (F 1,F 2,...,F n), and that x(t) is a parametric curve with Cartesian coordinates (x 1 (t),x 2 (t),...,x n (t)). Then x(t) is an integral curve of F if it is a solution of the autonomous system of ordinary differential equations,
The contour integral of a complex function: is a generalization of the integral for real-valued functions. For continuous functions in the complex plane , the contour integral can be defined in analogy to the line integral by first defining the integral along a directed smooth curve in terms of an integral over a real valued parameter.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, [1] is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley ), and uses a specified set of generators for the group.
In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers. [1] The notion was introduced in 1974 by Frank Harary and Allen Schwenk. [2]
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
Kernel functions provide a way to manipulate data as though it were projected into a higher dimensional space, by operating on it in its original space. So that data in higher-dimensional space become more easily separable. Kernel function is also used in integral equation for surface radiation exchanges.