Search results
Results from the WOW.Com Content Network
The asthenosphere (from Ancient Greek ἀσθενός (asthenós) 'without strength') is the mechanically weak [1] and ductile region of the upper mantle of Earth. It lies below the lithosphere , at a depth between c. 80 and 200 km (50 and 120 mi) below the surface, and extends as deep as 700 km (430 mi).
The lithosphere–asthenosphere boundary (referred to as the LAB by geophysicists) represents a mechanical difference between layers in Earth's inner structure. Earth's inner structure can be described both chemically (crust, mantle, and core) and mechanically. The lithosphere–asthenosphere boundary lies between Earth's cooler, rigid ...
Earth Location. Logarithmic representation of the universe centered on the Solar System. Celestial bodies on this graphic are clickable and shown with their sizes enlarged. Knowledge of the location of Earth has been shaped by 400 years of telescopic observations, and has expanded radically since the start of the 20th century.
The transition between the inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth . It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon 's radius.
The observable universe is a spherical region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion.
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth 's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago. [2][3][4] The model builds on the concept of continental drift ...
Lithosphere. A lithosphere (from Ancient Greek λίθος (líthos) 'rocky' and σφαίρα (sphaíra) 'sphere') is the rigid, [1] outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time scales ...
Earth is the third planet from the Sun and the only astronomical object known to harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all of Earth's water is contained in its global ocean, covering 70.8% of Earth's crust.