Search results
Results from the WOW.Com Content Network
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
In statistics, trend analysis often refers to techniques for extracting an underlying pattern of behavior in a time series which would otherwise be partly or nearly completely hidden by noise. If the trend can be assumed to be linear, trend analysis can be undertaken within a formal regression analysis, as described in Trend estimation.
Time series statistical tests (14 P) Pages in category "Time series" The following 58 pages are in this category, out of 58 total.
A time series database is a software system that is optimized for storing and serving time series through associated pairs of time(s) and value(s). [1] In some fields, time series may be called profiles, curves, traces or trends. [ 2 ]
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...
The R statistical software also includes many packages for time series decomposition, such as seasonal, [7] stl, stlplus, [8] and bfast. Bayesian methods are also available; one example is the BEAST method in a package Rbeast [9] in R, Matlab, and Python.
In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent ...