enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    Absorption half-life 1 h, elimination half-life 12 h. Biological half-life ( elimination half-life , pharmacological half-life ) is the time taken for concentration of a biological substance (such as a medication ) to decrease from its maximum concentration ( C max ) to half of C max in the blood plasma .

  3. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.

  4. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...

  5. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    This nuclide was long thought to be stable, but in 2003 it was found to be unstable, with a very long half-life of 20.1 billion billion years; [5] it is the last step in the chain before stable thallium-205. Because this bottleneck is so long-lived, very small quantities of the final decay product have been produced, and for most practical ...

  6. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    The rate of the overall reaction depends on the slowest step, so the overall reaction will be first order when the reaction of the energized reactant is slower than the collision step. The half-life is independent of the starting concentration and is given by t 1 / 2 = ln ⁡ ( 2 ) k {\textstyle t_{1/2}={\frac {\ln {(2)}}{k}}} .

  7. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]

  8. Elimination rate constant - Wikipedia

    en.wikipedia.org/wiki/Elimination_rate_constant

    t 1/2 is the half-life time of the drug, which is the time needed for the plasma drug concentration to drop to its half Therefore, the amount of drug present in the body at time t A t {\displaystyle A_{t}} is;

  9. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    For example, the isotope copper-64, commonly used in medical research, has a half-life of 12.7 hours. If you inject a large group of animals at "time zero", but measure the radioactivity in their organs at two later times, the later groups must be "decay corrected" to adjust for the decay that has occurred between the two time points.